Hete-CF: Social-Based Collaborative Filtering Recommendation using Heterogeneous Relations

Chen Luo¹, Wei Pang², Zhe Wang¹, Chenghua Lin²

¹Jilin University, China

²Aberdeen University, UK

http://www.chen-luo.com/

Background and Motivation

• The Hete-CF Model

• Experimental Result

CF-based Recommendation

• Use user-item rating matrix \mathbb{R} to make recommendation.

$$\min_{U,V} \sum_{i=0}^{m} \sum_{j=0}^{n} (U_i^T V_j - \mathbb{R}_{i,j})^2 + \lambda (\|U\|_F^2 + \|V\|_F^2)$$

- U and V are lower rank representations of users and items.
- Then the ratings can be calculated as

$$\hat{R_{ij}} = U_i^T V_j$$

• Suffered by Data Sparsity and Cold start problems.

Social Recommendation

- Using the information from social networks to help recommendation.
 - Trust-MF (IJCAI 2013) Uses trust relationship **between users** to improve recommendation
 - Hete-MF (IJCAI-HINA 2013) Uses item (Entity) similarity information to improve recommendation
- There are also another types of relations which can improve the recommendation performance.
 - Other Relations between users and items.

A Real Example

- Recommendation Task: Recommend Conference for Author.
- Target Recommendation Relation:

Author-Paper-Conference

- Social Information for improvement:
 - Relations between users: Author-Paper-Author.
 - Relations between items: Conference-Topic-Conference.
 - Relations between users and items: Author-Topic-Author-Paper-Conf.
- We want to design a model to use all these three types of relation

Background and Motivation

• The Hete-CF Model and Algorithm

• Experimental Result

Model Overview

- Part 1: Modeling Relations between users
 - A good recommendation result should consider the relations between users.
- Part 2: Modeling Relations between items
 - A good recommendation result should consider the relations between items
- Part3: Modeling Relations between users and items
 - Some other relations between users and items can improve the recommendation result.

Part 1: Modeling Relations between users

• Using Graph Regularization:

$$\min_{U,A} \sum_{k=0}^{N_A} \alpha_k \sum_{i=0}^n \sum_{j=0}^n S_A^k(i,j) \|U_i - U_j\|_F^2$$

- A: weight for each relations between users introduced.
- S_A^k is the similarity matrix between users, can be calculated as follow:

$$S_A^k(i,j) = S_{P_k^A}^{PS}(i,j)$$

• The P_k^A can be calculated using **PathSim** (VLDB'11)

Part 2: Modeling Relations between items

• Using Graph Regularization:

$$\min_{V,B} \sum_{k=0}^{N_B} \beta_k \sum_{i=0}^m \sum_{j=0}^m S_B^k(i,j) \|V_i - V_j\|_F^2$$

- B: weight for each relations between items introduced.
- S_B^k is the similarity matrix between items, can be calculated as follow:

$$S_B^k(i,j) = S_{P_k^B}^{PS}(i,j)$$

• The $S_{P_k}^{PS}(i, j)$ can be calculated using **PathSim**

Part 3: Modeling Relations between users and items

• Using Collaborative Model:

$$\min_{U,V,W} \sum_{k=0}^{N_W} w_k \sum_{i=0}^n \sum_{j=0}^m (U_i^T V_j - \mathbb{R}_{i,j}^k)^2$$

- W: weight for each relations between users and items introduced.
- \mathbb{R}^{k} is the relation graph of the *k*-th relation between users and items:

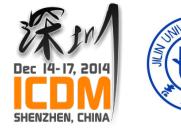
$$\mathbb{R}^{k}(i,j) = S_{P_{k}}^{PS}(i,j)$$

• The $S_{P_k}^{PS}(i,j)$ can be calculated using **PathSim**

The Unified Overview

• Model

 $\min_{U,V,A,B,W} \sum_{i=0}^{m} \sum_{j=0}^{n} (U_i^T V_j - \mathbb{R}_{i,j})^2 \\
+ \sum_{k=0}^{N_A} \alpha_k \sum_{i=0}^{n} \sum_{j=0}^{n} S_A^k(i,j) \|U_i - U_j\|_F^2 \longrightarrow \text{Modeling the relations between users} \\
+ \sum_{k=0}^{N_B} \beta_k \sum_{i=0}^{m} \sum_{j=0}^{m} S_B^k(i,j) \|V_i - V_j\|_F^2 \longrightarrow \text{Modeling the relations between items} \\
+ \mu \sum_{k=0}^{N_W} w_k \sum_{i=0}^{n} \sum_{j=0}^{m} (U_i^T V_j - \mathbb{R}_{i,j}^k)^2 \longrightarrow \text{Modeling the relations between users} \\
+ \lambda(\|U\|_F^2 + \|V\|_F^2 + \|A\|_F^2 + \|B\|_F^2 + \|W\|_F^2)$



The Learning Algorithm

• A Two-Step Iteration Method.

- The predicted rating vector U, V and the weight for each relation A, B, Wmutually enhance each other. Input: A heterogeneous information network $G = \langle O, E, W \rangle$. Three sets of meta-paths between user and item, users,
- Optimize *U,V* Given *A,B,W*
 - Becomes to a traditional CF model
 - Using SGD to obtain U,V
- Optimize **A,B,W** Given **U,V**
 - Becomes a linear model
 - Also using SGD to obtain A,B,W

```
Three sets of meta-paths between user and item, users,
           and items. The user-item rating matrix \mathbb{R}. Parameter \lambda,
           \alpha^s.
   Output: The rating Matrix \hat{R};
 1 Initialize U, V, A, B, W randomly;
2 while not reaching the inner U, V, A, B, C difference
   threshold do
       while not reaching the inner U, V difference threshold do
3
            Update U, V using Eqs.(16) and (17);
 4
5
       end
       while not reaching the inner A, B, C difference threshold
 6
       do
            Update A, B, W using Eqs. (22), (23) and (24);
 8
       end
9 end
10 The prediction rating is \hat{R}_{ij} = f(U_i^T V_j).;
11 return \hat{R}_{ij};
```

Algorithm 1: Hete-CF

Background and Motivation

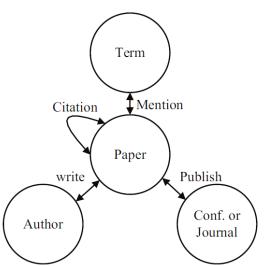
• The Hete-CF Model and Algorithm

• Experimental Result

Experimental Setup

• Datasets

- Sub-DBLP Dataset
- 261 Journal and 313 conference paper
- Task
 - Recommend *Conference* to *Author*
- Cross Validation
 - 5-fold cross validation
 - 40%(60%) as training
 - 60%(40%) as testing



• Baseline

- UserMean, ItemMean, NMF
- State-of-the-art
 - Trust-MF (IJCAI-13),
 - Hete-MF (IJCAI-HINA 13)
- Evaluation
 - MAE
 - RMSE

Experimental Result

• Result

% Training	Feature	Evaluation	UserMean	ItemMean	NMF	Trust-MF	Hete-MF	Hete-CF
40%	d = 5	MAE RMSE	0.942 ± 0.02	1.065 ± 0.02	2.156 ± 0.02	0.831 ± 0.01	0.931 ± 0.02	0.831 ± 0.02
		RMSE	1.216 ± 0.01	1.123 ± 0.02	2.394 ± 0.01	1.013 ± 0.02	1.105 ± 0.01	1.002 ± 0.03
	d = 10	MAE RMSE	0.943 ± 0.03	0.948 ± 0.01	2.194 ± 0.03	0.887 ± 0.01	0.901 ± 0.01	$\textbf{0.859} \pm \textbf{0.01}$
		RMSE	1.138 ± 0.02	1.256 ± 0.04	2.292 ± 0.02	1.083 ± 0.03	1.114 ± 0.03	1.056 ± 0.02
60%	d = 5	MAE	0.948 ± 0.02	0.919 ± 0.01	2.131 ± 0.04	$\textbf{0.812} \pm \textbf{0.02}$	0.891 ± 0.02	0.831 ± 0.02
		RMSE	1.132 ± 0.02	1.157 ± 0.01	2.385 ± 0.01	$\textbf{0.907} \pm \textbf{0.02}$	1.010 ± 0.03	0.938 ± 0.02
	d = 10	MAE	0.932 ± 0.03	0.978 ± 0.03	2.184 ± 0.02	0.873 ± 0.03	0.881 ± 0.01	0.856 ± 0.02
		RMSE	1.154 ± 0.02	1.143 ± 0.02	2.275 ± 0.01	1.051 ± 0.01	1.013 ± 0.02	0.994 ± 0.03

TABLE I: Algorithm Performance Comparison in DBLP

Background and Motivation

• The Hete-CF Model and Algorithm

• Experimental Result

- We proposed Hete-CF a CF-based social recommendation method using heterogeneous relations
- Hete-CF utilize three types of relations in a heterogeneous network.
- The experimental result showed the effectiveness of Hete-CF

Chen Luo

Master Candidate from Jilin University Home Page: <u>http://www.chen-luo.com/</u>

